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Abstract 

The significance of the empirical kinetic model function for diffusion-controlled reactions is 
discussed in connection with the fractal nature of the reaction geometry and the macroscopic 
character of the thermoanalytical curves for solid-state reactions. The mathematical properties 
of such empirical kinetic mode1 functions based on the geometrical fractal were investigated 
numerically in order to evaluate their practical usefulness as a possible diagnostic tool for 
distinguishing the most appropriate kinetic mode1 function. The procedure of distinguishing the 
kinetic mode1 function is extended,including such empirical kinetic model functions based on the 
geometrical fractal, and applied to the kinetic analysis of the thermal dehydroxylation of 
synthetic brochantite Cu,(OH),SO,. 
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1. Introduction 

Although thermoanalytical (TA) data are of a macroscopic nature averaged over 
the assemblage of a sample, the experimentally resolved shape of TA curves has 
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been widely used as a possible source for the kinetic understanding of solid-state 
reactions [l]. The shape of the TA curve is characterized by the kinetic model 
function f(a) derived on the basis of the physico-geometric assumption of the 
reaction interface movement [2,3], because the solid-state reaction is especially 
characterized by the existence of a specialized zone of locally enhanced reactivity at the 
reactant/product contact, i.e., the reaction interface. The kinetics is further character- 
ized assuming the Arrhenius-type temperature dependence of the rate constant, in 
which the apparent values of the activation energy E and preexponential factor A are 
the kinetic parameters. Accordingly, the TA curve is analyzed kinetically assuming the 
equation 

da 
-= Aexp 
dt 

where a, t, R,and T are the fractional reaction, time, gas constant and temperature, 
respectively. 

Recently, it was shown [4,5] that, when the TA curves for the solid-state process 
under investigation cannot fully be described by the conventional kinetic model 
functionf(a) because of the complexity of the reaction, the resultant kinetic parameters 
deviate from the true values as a simple mathematical consequence of Eq. (1). In 
this case, it can be useful to find an empirical function h(a) containing the smallest 
possible number of constants, so that there is some flexibility sufficient to describe 
the real process as closely as possible. In such a case, the kinetic model of hetero- 
geneous reaction is assumed as a distorted case of the simpler homogeneous kinetics 
and then mathematically treated by multiplying by an accommodation function 

a(a) C6-81 

44 = f(4 a (4 

Such 

c91 
an empirical kinetic model function has been proposed Sestak and Berggren 

h(a)=a”(l -a)“[-ln(1 -a)]* (3) 

It was believed that the Sestak-Berggren (SB) model function, containing as many as 
three exponents, is able to describe any TA curve [lo]. Use of the nonintegral kinetic 
exponents in the conventionalf(a) is also taken as one of the empirical kinetic models 
based on Eq. (2) [S]. Practically, empirical functions for a phase-boundary-controlled 
reaction and random nucleation and growth have been used, such as the reaction order 
(RO) and Johnson-Mehl-Avrami (JMA) models for characterizing solid-state reac- 
tions [S]. The mathematical properties of the empirical SB, RO and JMA models for 
applying practical kinetic analysis of TA curves were discussed comprehensively by 
Malek and Criado [l l-141. Although diffusion of the species is important in many 
solid-state reactions, an empirical kinetic model function for diffusion-controlled 
reactions has been missing in the formalism of TA kinetic analysis. Recently, Ozao and 
Ochiai discussed the kinetic model function for diffusion-controlled reactions on the 
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basis of the fractal nature of the reactant particle [15]. Adding the systematic 
understanding of the mathematical properties, the diffusion-controlled model with 
nonintegral kinetic exponent is probably included in the formalism of TA kinetic 
analysis as an empirical kinetic model function. 

In the present paper, the significance of the empirical kinetic model function 
for the diffusion-controlled reaction is discussed in connection with the fractal 
nature of the reaction geometry and macroscopic character of the TA curves. The 
mathematical properties of such empirical kinetic model functions are investigated 
analytically in order to evaluate their practical usefulness. The practical procedure of 
distinguishing the kinetic model function is extended, including the empirical kinetic 
model function based on a diffusion-controlled reaction. A practical example of kinetic 
analysis is described for the thermal decomposition of synthetic brochantite 
Cu,(OH),SO,. 

2. Theoretical 

2.1. Empirical kinetic model function for diffiision-controlled reaction 

As is the case with phase-boundary-controlled reactions, the conventional kinetic 
model function for the diffusion-controlled reactions is based on the geometrical 
constraints of reaction interface movement. Extension of the reaction geometry to 
nonintegral values is a possible way to formalize the empirical kinetic model function 
[7]. For example, the empirical kinetic model functions for the phase-boundary- 
controlled reaction R, and random nucleation and growth A, can easily be formalized 
with a nonintegral dimension [8]. 
Employing the nonintegral value of the dimension 1 I n I 3, the following reaction is 
obtained 

; = (1 - C(pn 

where r and r,, are the radii of the reactant particle at t = 0 and t = t. The nonintegral 
value n is described by reactions on a fractal domain, the hallmarks of which are 
anomalous orders and time-dependent reaction rate constants [16]. These anomalies 
stem from the nonrandomness of the reactant distributions. Among the practical 
examples of this fractal-like kinetics are chemical reactions in pores of membranes, 
excitation trapping in molecular aggregates, fusion in composite materials, and the 
processes in porous (Vycor) glass, assuming possible controversy about its pore 
topology [17]. 

For the diffusion-controlled reaction, Ozao and Ochiai [ 151 derived the following 
model functions with a nonintegral kinetic exponent by assuming the proportionality 
of the rate of volume shrinkage to the amount of diffused substance at time t and the 
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constan concentration gradient along the direction of diffusion 

(4 
dz 

11n<2 -= 
K 

dt [1 -(l -cL)~‘~~ ‘1 

(ii) n=2 
da K -= 
dt [-ln(1 -#Y)] 

(iii) 
dcc 

2<n13 -= 
K 

dt [(l -c+‘~~’ -11 

(5) 

(6) 

where K is an apparent rate constant. Eqns. (5), (6) and (7) are taken as the kinetic rate 
equation for the diffusion-controlled reaction with geometrical fractal [lS] corre- 
sponding to the conventional parabolic rate law [ 181, the two-dimensional diffusion 
law [19], and the GinstlinggBrounshtein law [20], respectively, when n = 1,2 and 3. 

In the practice of TA kinetics, it may be difficult to ascribe the nonintegral value of 
n determined from experimentally resolved shapes of TA curves to only a simple 
geometrical fractal, because of the macroscopic nature of the TA curves. Thus the 
kinetic rate equations for the diffusioncontrolled reaction with a non-integral kinetic 
exponent are treated here as the empirical kinetic model function k(u) within the regime 
of Eq. (2). Table 1 lists the geometrical-fractal-based k(u) functions for the diffusion- 

Table 1 
The empirical kinetic model functions h(a), together with their integral forms g(1) 

Symbol 

D” 

R” 

A, 

ROW) 

JMA(M) 

SB(m, n) 

Range of exponent h(l) 

11ns2 1 

[, -(, _p- ‘1 

n=2 1 

[-ln(1 -DC)] 

2~~113 1 

[, _ ?p ’ _ ,, 

11n<3 n( 1 ~ I)’ Ii” 

0.5<n_<4 m(l-d)[Pln(l-x)]‘~“m 

(1 -a)N 

M(1 -r)[-ln(1 P~)]lmllM 

a”( 1 - LY)” 

x+(1 -a)ln(l -do 

;-,+ -@” 

1 p(l pG()l’fl 

[-ln(1 Pa)]“m 

1 -(l -2)’ mN 

1-N 

[-ln(1 -c()]‘.~ 

No analytical form 
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controlled D,, phase-boundary-controlled R,, and random nucleation and growth A,,, 
models, together with those for the really empirical models RO(N), JMA(M) and 
SB(m, n) 

2.2 Muthematical properties of the empirical kinetic 
model function and its application 

Fig. 1 shows the dependence of the shape of the h(a) functions against a on the 
nonintegral value n. The h(u) curves are concave and have maxima at Q, = 0, as is the 
case with conventional f@) for diffusion-controlled reactions [ 131. The kinetic par- 
ameters are calculated from a single nonisothermal TA curve by using the logarithmic 
form of Eq. (1) [21] 

Fig. 1. Dependence of h(a) on 2 and n for diffusion-controlled reactions 

(8) 
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where 4 is the heating rate. Because the h(a) function participates in Eq. (8) as 
a logarithmic term, it seems less meaningful to discuss the slight variation of the 
nonintegral value of n in the single-run method. In addition, such ambiguity in 
determining h(cc) affects the apparent values of both the Arrhenius parameters, E and A, 
as a result of the mutual dependence of the apparent kinetic parameters [22]. 

The above problem of calculating the kinetic parameters is eliminated if the 
characteristic value of activation energy for the process is already known. Then the 
following formalism is obtained from Eq. (1) [ 11,13,23] 

y (2) = $ = $exp k 
( 1 

= Ah(x) (9) 

where 8 is the generalized time introduced by Ozawa in 1965 [24426]. Both sides of 
Eq. (9) being a function of SI, the process is characterized by the original shape of h(g). 
Through plots of v(‘x) against various h(r), the most appropriate h(a) represents the best 
linearity and the value of A is calculated from the slope [27]. 

It was shown [7,11,13,28,29] that the multiplied function of h(~) and y(r) is a useful 
diagnostic tool for determining the most appropriate kinetic model function, in which 
all the functions have a maximum at a characteristic value of zP. The function h(a)y(r) 
appears in the kinetic equation as follows 

with 

(11) 

where rc(x) is an approximation of exponential integration and x = E/RT Fig. 2 shows 
the dependence of the shape of the h(a)g(a) functions for diffusion-controlled reactions 
against CI on the nonintegral value n. The functions have a maximum at zP > 0.776. The 
value of M,, is characteristic for the h(cc) of a diffusion-controlled model, different from 
that in other empirical h(a) functions [7,13]. After rearrangement of Eq. (lo), the Z(U) 
function is defined as 

Z(N) = h(a)g(a) = n(x,&-r 
dt 4 

Differentiation of Eq. (10) gives 

(%)=[&] KM4 CwM’4 + x44 1 

(12) 

(13) 

By setting Eq. (13) equal to zero, the mathematical condition for the TA peak is 
obtained 

- &Q&J = XJG,) (14) 
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Fig. 2. Dependence of h(r)y(r) on J and n for diffusion-controlled reactions. 

When xP is infinite, Eq. (14) is written as 

- h’(c,“)y(cx;) = lim [x,n(x,)] = 1 
xp- x 

(15) 

where CC; is the xP at xP -+ CO. Using Eq. (15), the value of 2; is obtained numerically for 
the function h(cc)y(a) of the diffusion-controlled model. Fig. 3 shows the dependence of 
cl,” on the nonintegral value n. The cx,” increases from 0.774 to 1.0 on decreasing the 
n value from 3.0 to 1.0. 

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 

n value 

Fig. 3. Dependence of o(; of h(a) g( ) o( on the kinetic exponent n for diffusion-controlled reactions. 
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Fig. 4. Schematic diagram of the kinetic model determination using the y(a) and z(u) functions 

It is apparent that the empirical D, model is characterized as concave, having the 
maximum at ahl = 0 in the y (CL) function and the maximum within 0.774 I a,” I 1.0 in 
the Z(Z) function. Fig. 4 shows schematically the empirical kinetic model determination 
by means of y (a) and Z(U) functions. By adding the empirical model functions based on 
the geometrical fractal, the empirical RO(N) and JMA(M) functions can be related to 
the conventional kinetic model functionsfla) with integral kinetic exponents. However, 
the SB (m, n) function really has an empirical character, which in turn makes it possible 
to describe various types of shape of TA curves fulfilling Mu # 0. 

3. Experimental 

Precipitates of basic copper sulfate were obtained at 25°C by addingo. 1 M NaOH 
solution dropwise at a rate of 1.0 ml mini ’ with stirring to 100 ml 0.1 M CuSO, 
solution until the pH of the resulting solution was equal to 8.0 [30,31]. The precipi- 
tates, dried in air and ground in a mortar, were characterized by means of X-ray powder 
diffractometry, FT-IR spectroscopy and thermogravimetry (TG) and identified as 
corresponding to the mineral brochantite Cu,(OH),SO,. 

10.0 mg of the sample, sieved to the - 170 + 200 mesh fraction, was weighed into 
a platinum crucible 5 mm in diameter and 2.5 mm in depth. TG-DTG curves were 
recorded simultaneously at various heating rates 1.0 I 4 I 10.0 K mini ’ in a flow of 
N, at a rate of 30 ml min- r, using a Shimadzu TGA-50 apparatus. It is known that the 
thermal dehydroxylation proceeds by the following two-step reactions [30-331 

Cu,(OH),SO, -+ Cu,O(OH),SO, + H,O (16) 

Cu,O(OH),SO, + Cu,O,SO, + 2H,O (17) 
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The intermediate compound Cu,O(OH),SO, was prepared by heating 10.0 mg of the 
sample at 255°C for 15 h in the above TG apparatus. In order to obtain the TG curves 
for the second reaction, the product was cooled down to room temperature and again 
heated up to 500°C under conditions identical with the above TG measurements. TG 
curves for the first reaction at various heating rates were obtained by subtracting the 
TG curve for the second reaction from that for the overall dehydroxylation. The 
respective reaction steps of the dehydroxylation were analyzed kinetically along the 
diagram shown in Fig. 4. 

4. Results and discussion 

Fig. 5 shows the typical TG-DTG curves obtained at a heating rate of 10 K min- ‘. 
The respective reaction steps of the thermal dehydroxylation are not clearly separated 
and are only recognized by the anomalies in the DTG curve. Typical plots of CI against 
Tfor the respective reaction steps obtained by the experimental treatment described 
above are shown in Fig. 6. The mass loss due to the respective reactions corresponds 
quantitatively to Eqs. (16) and (17). The apparent activation energies E at various 
a were calculated using the Friedman method [34] by plotting ln(da/dt) against T ’ at 
a restricted x 

In $ = ln[Af(cl)] -:T 
0 

(18) 

The constancy of E values among different a is the prerequisite for the subsequent 
kinetic approach based on Eq. (l), which in turn provides the criterion for the 
appropriate kinetic analysis [22,35]. The constant E values of 158.0 f 1.3 and 

-0.2 - 

Temperature I “C 

Fig. 5. Typical TG-DTG curves for the thermal dehydroxylation of synthetic brochantite at a heating rate of 
10 K minm’. 
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3 1.0 
2 (W 

0.8 - 

Temperature I “C 

Fig. 6. Typical plots of o( against T for the thermal dehydroxylation of synthetic brochantite: (a) 
CU,(OH)~SO,+CU,O(OH),SO~ + H,O; (b) Cu,O(OH),SO,+Cu,O,SO, + 2H,O. 

193.1 f 0.9 kJ mol-’ were obtained for the first and second reactions in the range 
0.2 I a I 0.8 and 0.1 I ‘CX I 0.9, respectively. 

According to Eq. (9), the kinetic rate data at various heating rates were extrapolated 
to infinite temperature obtaining a plot of y(u) against CI [35]. Fig. 7 shows the 
comparison of the y(a) vs. CI plot between the respective reactions. Agreement of the rate 
data with a particular kinetic model function was investigated through plots of the 
various h(a) listed in Table 1 against y(a). The A, and D, laws were selected as the 
possible kinetic model functions for both reactions. Table 2 lists the appropriate kinetic 
exponents m and n in the A,,, and D, functions, together with the preexponential factors. 
It is difficult to distinguish the most appropriate h(x) from only the linearity of h(a) 
against y(x). 

In order to determine the most appropriate kinetic model function, the plots of Z(U) 
against CY were obtained according to Eq. (12) using the approximation [36] 

rr(X) = 
x3 + 18x2 + 88x + 96 

x4 + 20x3 + 120x2 + 240x + 120 (19) 

The Z(M) against CI plots for the respective reactions are also shown in Fig. 7. The plots of 
Z(U) against c( have maxima at c+, 2 = 0.64 and CL,” = 0.80for the first and second reactions, 
respectively. The value z: = 0.64 for the first reaction apparently indicates possible 
agreement with the A,,,-type model. The A,,, function is thus selected as the most 
appropriate model function for the first reaction, see Table 2. The second reaction with 
LP = 0.80 is identified as obeying the D, law and the exponent n = 2.6 is satisfied by the 
rllation between a,Z and n, see Fig, 4. 
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0.0 0.2 0.4 0.6 0.8 1.0 

(b) 

Fractional reaction a 

Fig. 7. Plots of y(a) and z(a) against z for the thermal dehydroxylation of synthetic brochantite: (a) 
Cu,(OH),SO,+ Cu,O(OH),SO, + H,O; (b) Cu,0(OH),S0,-+Cu,03SO~ + 2H,O. 

Table 2 
The empirical kinetic model function h(z) and the preexponential factor A for the thermal dehydroxylation of 
synthetic brochantite determined by plotting h(a) against y(u) 

Reaction h(z) Exponent A/s-’ 7” 

Cu,(OW,SO, A, m=OS 1.79 x lo’* 0.9926 
+ Cu,O(OH),SO, + H,O D, n = 1.0 8.29 x IO” 0.9884 

Cu,O(OH),SO, A, m=0.6 4.99 x lOI 0.9958 
+Cu,SO, + 2H,O D” n = 2.6 3.28 x 10” 0.997 1 

’ Correlation coefficient of the linear regression analysis of the h(u) against y(a) plot 

Although the kinetic model determination by the combination of y(a) and Z(U) is 
especially suitable for the nucleation-growth processes, having the capability of 
distinguishing SB models from JMA models as complicated nucleation-growth pro- 
cesses [37], the present kinetic analysis exemplifies the successful application of the 
method to the thermal decomposition of solids. On applying the method to the thermal 
decomposition of solids, the RO and/or the present D, models play an important role 
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in accommodating the actual reaction process in the kinetic model function as an 
extended interpretation of the phase- boundary-controlled and/or diffusion-controlled 
model. In the scheme of the y(a) and Z(E) functions, the empirical D, model can be 
distinguished successfully from the RO, JMA and SB models. 
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